Both adhE and a separate NADPH-dependent alcohol dehydrogenase (adhA) are necessary for high ethanol production in Thermoanaerobacterium saccharolyticum.
نویسندگان
چکیده
Thermoanaerobacterium saccharolyticum has been engineered to produce ethanol at ∼90% theoretical yield and titer of 70 g/L. Its ethanol-producing ability has drawn attention to its metabolic pathways, which could potentially be transferred to other organisms of interest. Here we report that the iron-containing AdhA is important for ethanol production in the high-ethanol strain of T. saccharolyticum (LL1049). A single-gene deletion of adhA in LL1049 reduced ethanol production by ∼50%, whereas multiple gene deletions of all annotated alcohol dehydrogenases except adhA and adhE did not affect ethanol production. Deletion of adhA in wild-type T. saccharolyticum reduced NADPH-linked ADH activity (acetaldehyde-reducing) by 93%. IMPORTANCE In this study we set out to identify the necessary alcohol dehydrogenases for high ethanol production in T. saccharolyticum Based on previous work, we had assumed that adhE was the primary alcohol dehydrogenase. Here we show that both adhA and adhE are needed for high ethanol yield in the engineered strain LL1049. This is the first report showing adhA is important for ethanol production in a native adhA host, which has important implications for achieving higher ethanol yields in other microorganisms.
منابع مشابه
Cofactor Specificity of the Bifunctional Alcohol and Aldehyde Dehydrogenase (AdhE) in Wild-Type and Mutant Clostridium thermocellum and Thermoanaerobacterium saccharolyticum.
UNLABELLED Clostridium thermocellum and Thermoanaerobacterium saccharolyticum are thermophilic bacteria that have been engineered to produce ethanol from the cellulose and hemicellulose fractions of biomass, respectively. Although engineered strains of T. saccharolyticum produce ethanol with a yield of 90% of the theoretical maximum, engineered strains of C. thermocellum produce ethanol at lowe...
متن کاملThe ethanol pathway from Thermoanaerobacterium saccharolyticum improves ethanol production in Clostridium thermocellum.
Clostridium thermocellum ferments cellulose, is a promising candidate for ethanol production from cellulosic biomass, and has been the focus of studies aimed at improving ethanol yield. Thermoanaerobacterium saccharolyticum ferments hemicellulose, but not cellulose, and has been engineered to produce ethanol at high yield and titer. Recent research has led to the identification of four genes in...
متن کاملEnhanced ethanol formation by Clostridium thermocellum via pyruvate decarboxylase
BACKGROUND Pyruvate decarboxylase (PDC) is a well-known pathway for ethanol production, but has not been demonstrated for high titer ethanol production at temperatures above 50 °C. RESULT Here we examined the thermostability of eight PDCs. The purified bacterial enzymes retained 20% of activity after incubation for 30 min at 55 °C. Expression of these PDC genes, except the one from Zymomonas ...
متن کاملExpression of adhA from different organisms in Clostridium thermocellum
Background Clostridium thermocellum is a cellulolytic anaerobic thermophile that is a promising candidate for consolidated bioprocessing of lignocellulosic biomass into biofuels such as ethanol. It was previously shown that expressing Thermoanaerobacterium saccharolyticum adhA in C. thermocellum increases ethanol yield.In this study, we investigated expression of adhA genes from different organ...
متن کاملEthanol production by the hyperthermophilic archaeon Pyrococcus furiosus by expression of bacterial bifunctional alcohol dehydrogenases
Ethanol is an important target for the renewable production of liquid transportation fuels. It can be produced biologically from pyruvate, via pyruvate decarboxylase, or from acetyl-CoA, by alcohol dehydrogenase E (AdhE). Thermophilic bacteria utilize AdhE, which is a bifunctional enzyme that contains both acetaldehyde dehydrogenase and alcohol dehydrogenase activities. Many of these organisms ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of bacteriology
دوره شماره
صفحات -
تاریخ انتشار 2016